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On the assimilation of Doppler radial winds into a high resolution
NWP model

F. A. Rihanl, C. G. Collier!, S. P. Ballard?, and S. J. Swarbrické

1School of Envi. & Life Sciences, Peel Building, Salford University, Gt. Manchester, M5 4WT, UK
2Met Office, JCMM, Meteorology Building, Reading University, Berkshire, RG6 6BB, UK

Abstract. An approach to the assimilation of Doppler radar  Considerable effort has been, and continues to be, put into
radial winds into the UK Met Office operational forecast the development of nowcasting techniques based upon the
model is described. We discuss the types of errors whictextrapolation of radar reflectivity fields aimed at generating
might occur in radar radial winds. The construction of sim- forecasts of precipitation up to 3—6 h ahead (for review; see
ulated high resolution radar data containing such errors igCollier, 1996; Krzysztofowicz and Collier, 2004). Whilst
described. Examples of these data are presented. Suchsaich systems have met with some success, particularly when
data set will be used within an Observing System Simula-incorporating wind fields from mesoscale numerical mod-
tion Experiment (OSSE) to investigate the impact of variousels (Golding, 1999), they are not appropriate for forecast-
assumptions made in the assimilation procedure. Examplemg to longer lead times. Improvements to forecasts for these
of radial winds derived from the Chilbolton S-band radar lo- lead times are now being sought through the assimilation into
cated in central southern England and the Met Office operamesoscale models of radar reflectivity using latent heat nudg-
tional model implemented at a 1 km resolution are discusseding methods (Macpherson et al., 1996) and variational tech-
nigues in which model “reflectivity” is compared with actual
measured reflectivity (Sun and Crook, 2001). More recently
Doppler radar radial winds have also been assimilated into
NWP models as vertical wind profiles derived from Veloc-
ity Azimuth Display (VAD) analysis (Lindskog et al., 2002;

Assimilation of Doppler radar wind data into atmospheric goniamin et al., 2004) and using variational techniques (Sun
models has recently received increasing interest. This is beénd Crook, 1997, 1998).

cause of the increasing use 0f||m|_tef:l area high resolution NU-" | this paper we outline the likely errors in estimates of
merical model; for.weathe.r prediction. The modgls FeQUI'eHoppler radar radial winds. We describe their representa-
observations with high spatial and temporal resolution for de'tion as part of a system for generating simulated data for use

termining the initial conditions, for which purpose radar datain Observing System Simulation Experiments (OSSES) to be

are particularly appealing. carried out using the Met Office operational Unified Model
Over the last thirty years or so networks of weather radars(UM) forecast system.

providing measurements of radar reflectivity from which

rainfall has been estimated, have been established within op-

erational observing systems. Initially the radars, operating a2 Errors in the determination of radial wind speed by
s-band (10 cm) or c-band (5-6 cm) wavelengths, did not have Doppler radar

the capability to measure the motion of the targets (mainly

hydrometeors but also insects and birds, and, for high powefargets moving away from or towards a radar produce a
systems, refractive index inhomogeneities) towards or awayPoppler shift between the frequency of the transmitted signal
from the radar site. During the last twenty years weather(Pulse), and the signal reflected from the targets and received
radars having Doppler capability measuring radial motion ofback at the radar. However, ambiguities may arise in these
the targets have become standard such that now in Europ@€asurements due to range folding and velocity aliasing (see

well over half of the operational radars are Doppler systemd?0Vviak and Zrnic, 1993). Fortunately procedures have been
(Collier, 2001). developed to remove these problems (see for example Gong

etal., 2003).

1 Introduction
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Fig. 1. Distribution of wind speed error due to (a) instrumental Z//iy//?/ Radar /%27//2

noise, and (b) strong velocity gradient across the pulse volume. T T

) ) Fig. 2. Geometry for scan of velocities on a VAD circle
Other problems remain, namely the existence of data holes

(where there are no targets), and irregular coverage, instru-
mental noise and sampling errors. Various types of interpo-
lation schemes have been used to fill in data holes and poor Sampling errors depend upon the size of the pulse volume
coverage (see for example Lin et al., 1993), although suclcorresponding to each data point. The Chilbolton radar in
schemes are unnecessary when three dimensional assimileentral South England has a pulse volume of about 300 m
tion schemes are implemented. However, the impacts of inby 0.25 degree, and, even though this is small, even smaller
strumental noise and sampling are more problematic. scale wind variability may introduce different sampling er-
May et al. (1989) discuss, and assess, a number of techrors from measurement point to measurement point. In prac-
niques used to estimate the Doppler shift in the received sigtice the sampling errors could be weakly correlated from
nals. The Doppler shift is proportional to the slope of the point to point, but only a very small additional error will
phase of the autocorrelation function (at zero lag) of the re-be introduced if this is ignored. Practically, sampling errors
turned signals. An estimator of the shift is the phase at thedominate since instrumental errors are usually minimized
first lag divided by the value of the lag in time units. This in operational systems. However, in what follows we out-
is known as pulse pair processing, and may be improved byine a system for creating artificial radar radial wind data
averaging more than one value of the phase divided by th&ets within which different types of error may be included.
lag (poly pulse pair). Figure 1 shows schematics of the impact upon a Gaussian
An alternative approach is to estimate the Doppler shift di- Doppler spectrum of various effects for example strong wind
rectly from the first moment of the Doppler spectra (Doviak shear across the pulse volume, and instrumentally-induced
and Zrnic, 1993) perhaps using a maximum likelihood esti-effects. Several of these effects upon the Doppler spectrum
mator (similar to a least squares fit) of the logarithmic spec-may be present in the same radar image, and, in the case
tral signal. A further technique is possible based upon theof geophysically-induced effects, their magnitude may vary
analysis of the power spectrum, its circular convolution andwith range and azimuth. The height and size of the pulse vol-
Fast Fourier Transform (FFT) of the same. Interestingly, itumes will increase with increasing distance from the radar.
was concluded by May et al. (1989) that the major limita-
tion to the radar performance is the small-scale variability
of the wind across the pulse volume. Therefore there is lit-3 Simulation model of Doppler radar radial wind fields
tle to be gained by using complicated algorithms to estimate
the Doppler shift. The width of the Doppler spectrum, usu- The construction of artificial radar data sets has been carried
ally assumed to be Gaussian, determines the correlation timeut for several studies over the last twenty years or so (see
of the signal, which is inversely proportional to the spectral for example Saarikivi, 1987; May et al., 1989; Xu and Gong,
width. Hence the spectrum width is directly related to the 2003). Consider a conical radar scan (Fig. 2) in a Cartesian
error in the measurements. coordinate systemx( y, z). The components of the wind
Instrumental errors may be reduced by selecting measurdield corresponding to these coordinates @are andw re-
ments at range intervals somewhat longer than the radagpectively.
range gate resolution (Keeler and Ellis, 2000). For exam- It is assumed that velocity-range folding has been re-
ple, Xu and Gong (2003) selected data every 1km alongnoved. The wind is assumed to vary with height accord-
each radar beam for a radar having a range gate resolutioimg to an Ekman spiral with variable surface friction. The
of 250 m. wind direction at the top of the boundary layer is parallel to
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the isobars, whilst the wind direction at surface is in the di- Adificail Radial Wind Velocity (t=0.0)
rection of the lower pressure due to the surface friction, the ‘ ' ‘ : ‘ '
coriolis force and pressure gradient force. Here

44444

u = Uy(1— e “cosaz), 1)
v = Uze ““sinaz, 2

where U, is the geostophic windg = /f/2k, f is the
coriolis parameter and is the eddy-exchange coefficients
(~ 5 x 10* cm? s~1) in middle latitudes.

The simulated data are assumed to be available on the mee
surement points. The radial velocity is calculated from

Distance North (km)

v, = u COS SiNf + v COSw COSH + w Sina 3)

whereq is the elevation angle arlis the azimuth angle of

the I’adar beam . = 0 “ -zlgistance ?East (kmio 0 % %

At each measurement point a Gaussian (or a modification Atifcial Radial Wind Velocity (=3.00)

of a Gaussian) distribution is introduced, the magnitude and
spatial variation of which may represent the different error
types (Fig. 1). Examples of the type of radial velocity field
so-produced are displayed in Fig. 3. Such data can be use
to test variational analysis schemes.

4 The Met Office UM and 3D-Var assimilation system

Distance North (km)

We intend to assimilate radial doppler wind data into versions
of the limited area form of the Met Office Unified Model
(nonhydrostatic formulation derived from Cullen et al., 1997)
which is currently run operationally at 12 km with a 3D-Var
analysis system based on Lorenc et al. (2000).

3D-Var has been used operationally to assimilate radar 0 60 40 .zgistm%ast(kmib 0 o e
wind information in the form of VAD wind profiles (see Par-
rish and Pu_rser, 1998). Rec_ently, B!D-Var, for the SWedIShFig. 3. A schematic representation of the definition of radial compo-
Meteorological and Hydrological Institute (SMHI) has been pent of the wind field on the conical moving surface of a radar. The
extended for assimilating Doppler radar wind data eitherexample shown is for a convergence line moving from the left to the

as radial super-observatidner as VAD wind profiles (see  right of the image. Gaussian noise has been inserted representing
Gustafsson et al., 2001; Lindskog et al., 2002). measurement error.

The Met Office 3D-Var system uses an incremental for-
mulation. Under the assumption that the background and
observation errors are Gaussian, random and independent
of each other, the optimal estimate of the Cartesian windthe model variables to the observation variable and a trans-
Xa = Xp + 8x in the analysis space is given by the incre- formation between the different grid meshes, &hds the

mental cost function, linear observation operator with elemenits = 9H;/dx;.

1 Some constructions of the background and observation error
J8X] = E(SxTBflsx + covariance matriceB andE are given in Lorenc (1997).

}[H(Sx v+ HxpTE Y HSX — y + Hxol,  (4) _ To _avoid the co_mputationally overwhe_lm_ing _problem of

2 inverting the covariance matri in the minimization of the

wheresx = x, — x, is the state vector of the analysis incre- cost function (4) and to accelerate the convergence of the

ments (the estimated radial winds is givenyx -+ Hx) minimization algorithm, a pre-conditioning of the minimiza-
x; is the state variable of the background Cartesian windstion Problem is needed (see Lorenc, 1997). This can be

andy denotes the observed radial winds in the observatiorichieved by defining a variable to be applied to the as-

space. H is the nonlinear observation operator that relatesSimilation incrementx (Usx = &) such that it transforms
the forecast errar in the model space int®, a variable of an

LSuper-observationare spatial averages of raw measurementsidentity covariance matrix (i.e< €, €’ >=1, where< ., . >
with different resolutions. is an inner product). This change of variable can be written
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Observed Radial Velocity (m/s) UTC 1215
at 1 deg Elevation (dBZ)
T

Fig. 4. Observed radial winds (nT<) for 1st July 2003 compared
with model-derived radial wind.

ase = U™1¢. Thus

B=<e,e>=U1<é el >uUT orBt=UTU. (5)
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PPI scan for Doppler velocity: 1st July 2003
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Fig. 5. Observed Doppler radial winds compared with the simulated
model radial velocity, at 1 km resolution and model level 13, using

Eq. (3).
4.1 Direct assimilation of PPI data (Sun and Crook, 2001)

Due to the poor vertical resolution of radar data, a vertical

interpolation of radar data from constant elevation levels to
model Cartesian levels can result in large errors. For this rea-
son a direct assimilation of PPI data with no vertical inter-

polation was recommended in Sun and Crook (1998, 2001).
However, radar data have better horizontal resolution than
that of the model (the poorest polar radar data is approxi-
mately 0.5-km at the farthest range distance). An observa-

This leads to a new representation of the incremental costion operator must be formulated to map the model variables

function of the form
JIX] = %XTX +

%[HU_lX —y+ Hxp]TETHHU LY — y + Hx,1(6)
With this cost function (6), no inversion & is needed. The

control variablesY are velocity potential, streamfunction,
unbalanced pressure and relative humidity.

from model grid such that the distance between the observa-
tions and model solution is estimated in the cost function.

Thus, we take advantage of the vertical resolution of the
model being much better than those of radar data. The ob-
servation operatioriH, is formulated to map the data from
the model vertical levels to the elevation angle levels via the
formula

> GuvrAz

VUre = Hv,) = W,

@)
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whereuv, . is the radial velocity on an elevation angle leusgl,
is the model radial velocity, antiz is the model vertical grid
spacing. The functioz = eo?/28? represents the power
gain of the radar beang, (in radiance) is the beam half-width

80

Reduced resolution for Doppler velocity (4km, 1 deg.)
T T T T T
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ande is the distance from the center of radar beam (in radi-  »f  _ lx(:\ \\\\\‘n Lt

I i H : . b &SN | |
ance). The summation is over the model grid points that lie o 2NN 5
in a radar beam. 200 gy WS

4.2 Doppler radial wind super-observations

Doppler radars produce radial wind raw data with high tem-
poral and spatial density. The horizontal resolution of the
data is around 300 m whereas the typical resolution of a
mesoscale NWP model is of the order of 10km. To reduce
the representativeness error, and correspond the observatior
to the horizontal model resolution, one may use spatial av-
erages of the raw data, that called super-observations. The
desired resolution for the super-observations can be gener
ated by defining parameters (which can be freely chosen) for
the range spacing and the angle between the output azimutl
gates (see Lindskog et al., 2002). Figure 4 shows radar ra-
dial winds from the Chilbolton radar on 1 July 2003, and

Distance North(km)

the corresponding high resolution NWP radial winds calcu- _

lated along the radar beam. Figure 5 displays the radar radia <

wind data and the corresponding NWP radial winds at a fixed
model level. The impact of reducing the resolution is shown
in Fig. 6.

4.2.1 Observation operator for radar radial winds

The radar wind observation operatdrproduces the model
counterpart of the observed quantity that is presented to the
variational assimilation. In the case of a horizontal wind ob-
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servation from VAD profiles (see Fig. 2 the observation Op-fig. 6. The super-obbed Doppler radial winds, at 4 km resolution
erator consists of a simple interpolation of the model wind compared with the model radial velocity, at 4 km resolution.

field to the location of the observation. However, in the case
of a direct assimilation of radar radial wind, which is not a
model variable, the observation operator involveépabilin-

beam broadening is not taken into account.

Second, the

ear interpolation of the NWP model horizontal wind compo- bending of the radar beam due to the hydrolapse in the
nentsu andw to the observation location:i( a projection of ~ boundary layer is not properly taken into account. Third, itis
the interpo]ated NWP model horizontal Wind, at the point of assumed that there is no mean VelOClty towards the radar due

measurement, towards the radar beam using the formula to the vertical motion of the precipitation, reSUlting in valid-
ity of measurements only for low elevation angles. This im-
v = u COSH + v sing, (8)

r COSx

- = v}, CO , and¢ = arctan| ————
Ur = vy COSP + ) ¢ (rsma+d+h

plicit assumption is embedded into (8) where only the NWP
. . , model horizontal wind is included.
wherele IS the az|muth a_ngle of the raQar peam; and)( One possible solution to relax the first assumption is to in-
thewy, is finally projected in the slanted direction of the radar troduce a weighted average, using a Gaussian beam pattern,
beam as for the vertical interpolation of model horizontal wind com-
> ©) ponentsu, v of (8) to the observation location (see Salonen,
’ 2002). Then to model the broadening of the radar beam in
) ) . the observation operator, one can use the Gaussian weight
whereq is the elevation angle of the radar beam (see Lind-¢,1ction
skog et al. (2002)). The formula f@r takes approximately )
into account the curvature of the Earth. Inthe term isthe  ,, _ L exp(— (z ~ 20) ) (10)
range,d is the radius of the Earth aridis the height of the 27 k
radar above the sea level. in the vertical instead of linear interpolation when defining
Some assumptions are, however, built into the standardhe model horizontal componenisandv to the observation
formulation of the observation operator (9). First, the radarheight. Where, in formula (10}, is the model level height
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