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Optical flow in radar images
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Abstract. Optical flow is one of the standard computer vi-
sion methods for computing motion vectors. The key idea
is to derive motion vectors from intensity gradients and dif-
ferences of subsequent images. This model is analogous to
advection equations in meteorology which motivates testing
the method for weather radar data. Also the computational
simplicity of optical flow makes it an interesting alternative
to autocorrelation based methods.

Our final target is to apply motion vectors in nowcasting
precipitation for 0–3 h. (One should keep in mind that mo-
tion of a precipitation area generally differs from Doppler
measurable motion of droplets.) Related products typically
exceed 1000×1000 pixels in size and the maximal allowed
processing time is below a minute for deriving the motion
vectors.

In this paper, we briefly review the optical flow model and
suggest techniques for fast, quality weighted computing in
extraction of motion vectors. We emphasize weather radar
data specific issues such as the discontinuity and multi-scale
nature of precipitation. Nevertheless, our first experiments
suggest that the proposed techniques are applicable also in a
wider context of motion extraction problems.

1 Introduction

Nowcasting of precipitation is the most central application in
operational radar meteorology. As to automated nowcasting
of the next couple of hours, direct radar data extrapolation
techniques are typically superior to physical models applied
in numerical weather prediction (NWP). Principally, general-
purpose image extrapolation schemes can be considered as
far as attention is paid on application specific constraints. In
processing weather radar data, we would like to stress the
following three issues.
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First, accepted processing time for radar image products is
typically from one to five minutes. Hence, the applied algo-
rithms should be computationally light.

Second, the objects appearing in radar data are distinct,
separated by large clear areas. This is due to discontinuous
nature of precipitation and also due to sensitivity limits of
radar. However, motion fields are continuous; motion vectors
should be assigned also to echo free areas.

Third, precipitation objects have large differences in size,
ranging from convective cells in half-kilometre scale to pre-
cipitation areas hundreds of kilometres wide. A motion de-
tection algorithm should however work consistently regard-
less of target size.

This far, for extracting motion in image sequences, a stan-
dard technique has been to apply autocorrelation due to its
conceptual clarity and robustness (Holmlund, 1998). How-
ever, an alternative approach, the optical flow technique
(Sonka et al., 1993) seems to be simpler and hence faster
than autocorrelation. While autocorrelation is essentially a
matching technique, optical flow applies differential com-
puting that requires fewer computation loops. The problem
remains to find out whether this speedup compromises the
quality of results.

An excellent discussion on different optical flow methods
is presented by J. L. Barron and Fleet (1994). We apply
a general optimization problem outlined in that paper and
adopt respective notations.

In this paper, we focus on computational speed and utiliza-
tion of quality information. We start by reviewing the optical
flow model (Sect. 2) and outline our modified scheme for
weather radar data (Sect. 3). In Sect. 3.1, we show how radar
data can be treated as a continuous flow by smoothing input
images. Both pre-smoothing and actual optical flow compu-
tation can be accelerated by sliding window techniques dis-
cussed in Sec. 3.2. The proposed computation scheme sup-
ports generating and using quality information in both ex-
traction and application of motion vectors; two quality de-
scriptors are suggested in Sect. 3.3.
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Fig. 1. The proposed overall scheme.

f −1 (5th July 2004, 14:30)

f (5th July 2004, 14:45)

Fig. 2. Sample images from FMI Anjalankoski radar.

2 Optical flow

In optical flow, the basic idea is to derive a continuous motion
field – a flow – from temporal and spatial derivatives of two
subsequent images Sonka et al. (1993). Formally, flow of
quantityf = f (x, y, t) can be modelled as

df

dt
= ft + fxu + fyv = ft + ∇f · v. (1)

wheredf/dt is the change observed in the coordinate sys-
tem flowing with data and the partial derivatives indicate the
changes in the rigid image frame coordinates. Motion vec-
tor v = [u v]

T is the quantity to be derived. This model is
analogous to meteorological advection equations, which sug-
gests using this approach in related problems as well. Prac-
tically, one assumes no changes in the data,df/dt = 0,
and hence∇f · v + ft = 0. This single equation con-
tains two unknowns,u andv, which suggest solving a larger
set of respective equations within some neighborhood� of
each(x, y). This overdetermined set leads to minimizing a
squared sum of type∑
�

w · (∇f · v + ft )
2 (2)

wherew is a weighting function defined in image coordinates
and/or neighborhood coordinates. The role and definition of
w is discussed further in Sect. 3.3. After some matrix manip-
ulation, we obtain

v =
1

G2
xy − GxxGyy

[
GyyGxt − GxyGyt

−GxyGxt + GxxGyt

]
(3)

where Gxx =
∑

wfxfx , Gxy =
∑

wfyfx , Gyy =∑
wfyfy , Gxt =

∑
wfxft , andGyt =

∑
wfyft (within

�).
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Fig. 3. Image f obtained through multi-scale-smoothing off

(Fig. 2, bottom).

Fig. 4. Gradient quality imagew(x, y) of f . Light areas contain
pixels of high quality.

3 Proposed modifications

The proposed scheme is shown in Fig. 1, illustrating the sep-
arate roles of motion vector extraction and application. The
details discussed in this section refer to this image. Likewise,
we shall focus on two sample images shown in Fig. 2.

3.1 Pre-smoothing

Direct application of optical flow solution (3) is possible for
data that are flow-like: smoothly continuous thus differen-
tiable. Optical flow approach needs gradient information to
work. However, weather radar data contains objects with dis-
tinct edges, and the objects are separated from each other by
echo-free areas.

This suggests that information of the edges should be
somehow spread into echo-free areas. This can be achieved

Fig. 5. Motion vector qualityq (top), motion vector componentu
(center) and itsq-weighted-averaged versionu (bottom).

for example by smoothing input images with an averaging
convolution mask. As a result, not only the effective scope
of the objects will increase but also discrete edges will be-
come “more differentiable”. Specifically, we suggest multi-
scale smoothing, which means blurring the original imagef
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f +3 f +12

f +6 f +15

f +9 f +18

Fig. 6. Frames from an image series extrapolated fromf −1 andf .
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with an averaging window operatorA and mixing the result
in the original image:f = cf + (1 − c)A{f } with some
c ∈]0, 1[. (One can apply this recursively.) As shown in
Fig. 3, the resulting image contains both original details and
smoothed regions. As a rule of thumb, the dimensions of
the averaging window should be comparable to those of the
object displacements between subsequent image frames.

3.2 Accelerating computation by algorithm design

Image processing operations engaging computation of cumu-
lants can be often accelerated. For example, performing the
above-mentioned smoothing for anN × N image with an
n×n window requires a computational effort proportional to
N2n2 using a brute force algorithm (with four nesting loops).
However, the same result can be obtained by two subsequent
averaging operations of window dimensionsn×1 and 1×n,
with effort proportional toN2n. Moreover, using a sliding
window technique, that is, by incrementally updating the in-
tensity sum in a window, the computational complexity is of
orderN2

+2n ≈ N2 which is remarkable in the case of large
n.

Also the actual optical flow computation can be acceler-
ated. The crucial point here is that ifw = w(x, y, t) in image
coordinates, also the cumulants in (3) can be updated using a
sliding-window technique, yielding complexity of orderN2n

instead ofN2n2. (If w = w(i, j) in � coordinates, sliding is
impossible.)

3.3 Weighting computation with quality descriptors

If available, quality information should be taken into account
in computations, especially in compositing multi-source data
but also in spatial or temporal interpolations of single-source
data. Sometimes quality information is available for in-
put data, sometimes a computation scheme provides it as a
byproduct, with negligible extra effort, and sometimes it is
a central component of a system (Holmlund, 1998; Peura,
2002).

In this context, we consider quality information that shares
the same format with the data, i.e. an image array. Then, one
can apply weighted averaging or weighted median filtering
for the original image. As a result, data with high quality
smoothly overrides (spatially or temporally adjacent) data of
lower quality.

In applying optical flow, there seems to be at least two
stages where to use data quality.

First, weighting functionw mentioned in (2) and (3)
should describe the quality — that is, usability or confi-
dence — of each image location(x, y) for the optical flow
algorithm. We suggest that this function is a “gradient sta-
bility measure” of the formw(x, y) = wo(||∇f (x, y) −

∇f −1(x, y)||) wherewo is an increasing function. A related
image is shown in Fig. 4. Zero or small gradient change
tells that that we are probably still “on the same slope”
while changed gradient indicates that the slope has gone past
(x, y).

Second, there is a simple way to associate quality infor-
mation to motion vectors. If neighborhood window� is
small compared to the size of details in image data, the gra-
dient values inside� are nearly same, and the calculation
of a motion vector is ill-determined. This is the so called
aperture problem. The nominator in (3) is actually an in-
verted and negated determinant (Peura and Hohti, 2004); the
value of the determinant is zero if the motion vector is am-
biguous. Hence, we propose a monotonous mapping of type
q(x, y) = qo(GxxGyy−G2

xy) whereqo is an increasing func-
tion. A related image is shown in Fig. 5.

4 Extrapolation

As we mentioned in the introduction, we aim at nowcasting
products based on direct extrapolation of weather radar data.
Samples from an image series extrapolated from the two im-
ages of Fig. 2 are shown in Fig. 6.

5 Conclusions

We presented how optical flow approach can be applied in
extracting motion vectors in radar images. Pre-smoothing is
recommended, because radar images contain discontinuities
at the edges of precipitation areas. The basic optical flow
method is simple as such, but with minor efforts in algorithm
design it can made even faster. Hence, in time critical appli-
cations, optical flow should be considered as an alternative to
autocorrelation based methods. As to quality computation,
optical flow algorithm both applies and produces quality in-
formation fluently. The results obtained this far encourage
continuing this research. In the future, we will study paral-
lel processing for convective and widespread rain as well as
detection of divergence and converge.
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